skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lim, Hyunchul"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present Ring-a-Pose, a single untethered ring that tracks continuous 3D hand poses. Located in the center of the hand, the ring emits an inaudible acoustic signal that each hand pose reflects differently. Ring-a-Pose imposes minimal obtrusions on the hand, unlike multi-ring or glove systems. It is not affected by the choice of clothing that may cover wrist-worn systems. In a series of three user studies with a total of 36 participants, we evaluate Ring-a-Pose's performance on pose tracking and micro-finger gesture recognition. Without collecting any training data from a user, Ring-a-Pose tracks continuous hand poses with a joint error of 14.1mm. The joint error decreases to 10.3mm for fine-tuned user-dependent models. Ring-a-Pose recognizes 7-class micro-gestures with a 90.60% and 99.27% accuracy for user-independent and user-dependent models, respectively. Furthermore, the ring exhibits promising performance when worn on any finger. Ring-a-Pose enables the future of smart rings to track and recognize hand poses using relatively low-power acoustic sensing. 
    more » « less
    Free, publicly-accessible full text available November 21, 2025
  2. C-Auth is a novel authentication method for smart glasses that explores the feasibility of authenticating users using the facial contour lines from the nose and cheeks captured by a down-facing camera in the middle of the glasses. To evaluate the system, we conducted a user study with 20 participants in three sessions on different days. Our system correctly authenticates the target participant versus the other 19 participants (attackers) with a true positive rate of 98.0% (SD: 2.96%) and a false positive rate of 4.97% (2.88 %) across all three days. We conclude by discussing current limitations, challenges, and potential future applications for C-Auth. 
    more » « less